EPRL - Printemps 2025 Alexis Michelat

Algebre linéaire avancée II Section de Physique Exercices
Solution 9 17 avril 2025
Exercice 1. 1. Soit o : V' xV — K une forme bilinéaire quelconque. Alors p(v,w) =

+(a(v, w) + a(w, v)) est bilinéaire et symétrique et ¥ (v, w) = 3(a(v, w) — a(w,v))
est bilinéaire et antisymétrique.

De plus on a bien a(v,w) = p(v, w) + (v, w).

2. La matrice de Gram G d’une forme bilinéaire symétrique est une matrice symé-
trique (i.e. G* = G). En effet, par définition de la matrice de Gram : si vy, ..., v,
est une base de Vet a: V x V — K est une forme bilinéaire, alors le coefficient
de la matrice de Gram g, ; = o(v;, v;) = a(v;, v;) = g
De méme si « est antisymétrique, la matrice de Gram G est antisymétrique (i.e.
G' = —@). En effet, on a g;; = a(v;,vj) = —a(vj,v;) = —gji.

3. Le raisonnement au point 2. est valable dans toute base, donc ce résultat ne dépend
pas de la base choisie.

Exercice 2. (a) Supposons que w : V x V — R est une forme bilinéaire qui vérifie
w(z,z) = 0 pour tout z € V. On a alors aussi w(z + y,z +y) = 0 pour tous z,y € V et
donc par bilinéarité

O=w(+yz+y) =w ) tw(zy) +wly, ) +wly,y) =w@,y) +wy ),

=0 =0
donc w(z,y) = —w(y, z) pour tous z,y € V. On a montré que si w(z,z) = 0 pour tout

x € V alors w est antisymétrique.

Réciproquement supposons que w est antisymétrique, alors pour tout x € V on a
w(z,r) = —w(z,x) (par antisymétrie), donc

2w(z,r) = w(z,x) +w(z,z) =0,

ce qui implique que w(x,x) = 0 pour tout x € V. Une forme bilinéaire est donc alternée
si et seulement si elle est antisymétrique.

(b) Le raisonnement en (a) est valable sur un corps quelconque, a condition que 2 # 0.
L’équivalence entre forme bilinéaire alternée et antisymétrique est donc vraie pour toute
forme bilinéaire sur un corps K quelconque de caractéristique différente de 2.

Remarquons que si K est de caractéristique 2, alors 2 = 0 dans K et donc 1 = —1
et w(z,y) = —w(x,y) pour tous x,y € V. Sur un tel corps une forme bilinéaire est
symétrique si et seulement si elle est antisymétrique (i.e. les deux notions coincident).
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Exercice 3. Montrons la premiere formule. Soient u,v € V. Alors
lu+vll* = (u+v,u+v) = (u,u) + (u,0) + (v,u) + (v,0) = (u,u) + 2w, 0) + (v, v),
ol on a utilisé la bilinéarité dans la deuxieme égalité et la symétrie dans la troisieme
égalité. Donc
1 1
5 (w0l = Jlull® = [ol?) = 5 (u, 1) + 2w, v) + (0, 0) = (u,u) = (v,0))
= (u,v).
La deuxieme formule se prouve de la méme facon et la troisieme formule est une consé-
quence des deux premieres.

Exercice 4. (a) On peut procéder par calcul direct ou par récurrence.

Par calcul direct :

n 2 r n n n n
2 u = <ZZ> =3 ) =3 il
i=1 i=1 j=1 =1

i=1 j=1

car

(03, v;) = [[oi1? sit=j
v 0 sii#j

Par récurrence sur n. Si n = 1, il n’y a rien a montrer. Supposons maintenant n > 2.

Comme v,, est orthogonal a chacun des v; pour 1 < ¢ < n — 1, il est aussi orthogonal a
leur somme v = vy + ...+ v,_1 par linéarité du produit scalaire :

(U, v) = (V1 + ... 4+ Vo1, V) = (U1, 0n) + ... + (Up_1,0,) =0,
et de méme (v,,u) = 0 par symétrie. Alors
lutvall* = (utvn, utvn) = (u, )+, vp)+(vn, W)+ {vn, va) = (u, w)+(vn, va) = ([l *+lva*.

Mais, par hypothése de récurrence, ||u||* = |lv;+. ..+ vo1]]? = ||o1]|*+ ...+ [Jun_1]]?. On
en déduit donc

o1 4 -+ vall? = [lu+val? = [[ull® + oall? = il? + - + [Jon1ll? + [Jvall?

ce qu’il fallait démontrer.

(b) Supposons que Z Av; = 0, 0ou Aq,...,\, € R. Par le théoreme de Pythagore
i=1

n T
Z)\?HWHQ = Z [Asvil | =
=1 i=1

Donc \; = 0 pour tout ¢ car chaque ||v;|* > 0.

généralisé on a
2

=0.

n
E AiVi
i=1
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Exercice 5. (a) Un quadrilatére de sommet ABCD dans le plan euclidien R? est un
parallélogramme si et seulement si on a les égalités vectorielles :

AB=DC et AD=BC,

ou E (B—A) etc. Notons x = f@ ety = E les diagonales du parallélogramme sont
alors 1@ =z +yet BD =y — x et le parallélogramme est un losange si et seulement si

lz]| = d(A, B) = d(A, D) = [|y.

En appliquant la formule de polarisation aux vecteurs x 4+ y et x — y, on voit que

gz =gy =7 (1@ +9)+ @ =9I = @ +5) — = 5)I) = 2l ~ Il

(7:79)- [ - [

L’affirmation (a) découle immédiatement de cette propriété.

c’est-a-dire

(b) On a

lz+ylP+Hlz—ylI* = (l=1* + 262, 9) + 1y 1) + (2 l* — 20z, 9) + 1yl*) =2 (=l + 1ly1*) -

C’est-a-dire
| =] )
=9 .

(c) Si ABCD est un rectangle, alors (z,y) = 0 et ||z 4+ y|| = ||z — y|| (les diagonales d'un
rectangle ont méme longueur). La relation précédente devient

2
|

Iz +ylI* = [l2l* + llyl*

Exercice 6. Sur L*([0,7/2]), on introduit le produit scalaire

/2
(f.g) = / f(2)g(x)dz

On applique I'inégalité de Cauchy-Schwartz

(f1, f2) < ISl £
aux fonctions fi(z) = /x et fo(x) = /sin(z). On a dans ce cas

2

w/2
rrf1\\2=<f1,f1>=/0 rir ="
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w/2
2 2: 2, J2) = in d = 1.
1fal2 = (o fo) / sin(z)de = 1
Donc

- JEao
[ Ve = (i) < Il = 1= T

Exercice 7. (a) La condition A - A* = I,, entraine que toute matrice orthogonale est
inversible. Par conséquent O(n) C GL,(R) et on vérifie facilement qu’il s’agit d'un sous-
groupe.

(b) On admet que si A € M, (R) est une matrice antisymétrique, alors la matrice
(I — A) est inversible (on le montrera dans une prochaine série d’exercices).
On observe d'une part que (I + A)" = (I — A) et d’autre part que (I + A) et (I — A)
commutent (car (I + A)(I — A) = (I — A)(I + A) = I — A?), d’ont on déduit facilement
que (I +A) et (I — A)~! commutent aussi. Donc

B'= (I +A)I-A)™ = (-4 T +A) =T +A) (-4

On rappelle aussi que pour toute matrice inversible X on a (X~1)" = (X*)™', ainsi

1

B'=(I+A)"(I-A)) =I-AUI+A)""

Et finalement
B-B'= (I—i—A)(I—Af1 . (I—A)(I—i—Af1 =].

(c) Pour A = < 0 —s ) on trouve

s 0

1 1—s% —2s
— — _1:—
B=(I+A)I-4) 1+32( 2s 1—52>

Exercice 8. Le polynome caractéristique de B est xyp = X* —8 X3+ 6 X2 +40 X +25 =
(X + 1)*(X — 5)% Le spectre est donc o(B) = {—1,5} et les multiplicités géométrique
de ces deux valeurs propres sont égales 1, donc la forme canonique de Jordan de B est la
matrice

5 1 0 0
0 5 0 0
JBl=hG) @ h(-D=| 40 | |
0 0 0 —1
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Pour trouver une base de Jordan, on cherche alors deux vecteurs cycliques d’ordre 2,
I'un pour la matrice (B +14) et I'un pour la matrice (B —514). Concretement cela signifie
qu’on cherche Y, 7, € K* tels que

Zl - (B + I4)ZQ # 0, (B + 14)222 = (B + I4)Zl - O
Y) = (B —514)Yy # 0, (B —51,)*Y; = (B — 51,)Y; = 0.

On peut prendre pour Z; le quatrieme vecteur de base et pour Y, le deuxieme vecteurs
de bases, on a donc

Ly = , Z1=(B+1)Z, = , Yo = , Y1 = (B -5L)Y, =

_o O O
—_—_0 O
O O = O
O~ O

La matrice de changement de base cherchée est donc

, et on vérifie que PJ[B] = AP.

O = O =
OO~ O
—_ -0 O
—_o o o

Exercice 9. (a) On note P,, C R[X] le sous-espace vectoriel des polynomes a coefficients
réels de degré au plus n, et P/ l'espace vectoriel dual. On sait que les masses de Diracs
(covecteurs d’évaluation) 0y, 0z, , . . . 0, € P sont linéairement indépendantes et forment
donc une base de l'espace dual puisque dim(P)) = n + 1. Le covecteur d’intégration

b
I[a,b] - P i—>/ P(x)dm

est donc combinaison linéaire des 0., ce qui signifie qu’il existe mg, my,...m, € R tels
que

I[a,b] = kaéwk € P7/1
k=0

Cette égalité signifie que pour tout polynéome P € P, on a

n b n
Iiy(P) = Z M0y, (P), cest-a-dire / P(z)dx = kaP(xk).
k=0 @ k=0

(b) Non, il n’y a pas de contradiction entre les exercice 9.9(a) et 8.8(d), car un poly-
nome de degré au plus n est completement déterminé par n 4 1 valeurs distinctes.

bt



EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Solution 9 17 avril 2025

Dans les deux cas on discute de la possibilité de représenter (ou non) le covecteur
d’intégration comme combinaison linéaire de covecteurs d’évaluation. Mais dans le cas
de lexercice 9.9(d) on considere seulement 'espace vectoriel des polynémes de degré au
plus n, qui est un espace vectoriel de dimension finie alors que dans I’exercice 9.9(a) on
considere I'espace vectoriel de toutes les fonctions continues, qui est de dimension infinie.

(c) En posant que

/ " Pla)ds = mo P(0) + 1 P(1) + ms P(2),

2

pour les polynomes po(z) = 1, pi(z) = x, po(z) = x°, on trouve le systeme d’équations

linéaires suivant pour mg, my et mo :

mo+m1+m2:2,
0-mo+mqg+2-mg =2,

O~m0+m1+4~m2:§.

. 1 4 1
La solution est mg = =, m; = = et mgy = —.
3 3 3

Remarque 1. On peut aussi utiliser les formules d’interpolation de Lagrange pour dé-

terminer les poids my.



