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Exercice 1. 1. Soit α : V ×V → K une forme bilinéaire quelconque. Alors φ(v, w) =
1
2(α(v, w) +α(w, v)) est bilinéaire et symétrique et ψ(v, w) = 1

2(α(v, w) −α(w, v))
est bilinéaire et antisymétrique.
De plus on a bien α(v, w) = φ(v, w) + ψ(v, w).

2. La matrice de Gram G d’une forme bilinéaire symétrique est une matrice symé-
trique (i.e. Gt = G). En effet, par définition de la matrice de Gram : si v1, ..., vn

est une base de V et α : V × V → K est une forme bilinéaire, alors le coefficient
de la matrice de Gram gi,j = α(vi, vj) = α(vj, vi) = gj,i.
De même si α est antisymétrique, la matrice de Gram G est antisymétrique (i.e.
Gt = −G). En effet, on a gij = α(vi, vj) = −α(vj, vi) = −gji.

3. Le raisonnement au point 2. est valable dans toute base, donc ce résultat ne dépend
pas de la base choisie.

Exercice 2. (a) Supposons que ω : V × V → R est une forme bilinéaire qui vérifie
ω(x, x) = 0 pour tout x ∈ V . On a alors aussi ω(x+ y, x+ y) = 0 pour tous x, y ∈ V et
donc par bilinéarité

0 = ω(x+ y, x+ y) = ω(x, x)︸ ︷︷ ︸
=0

+ω(x, y) + ω(y, x) + ω(y, y)︸ ︷︷ ︸
=0

= ω(x, y) + ω(y, x),

donc ω(x, y) = −ω(y, x) pour tous x, y ∈ V . On a montré que si ω(x, x) = 0 pour tout
x ∈ V alors ω est antisymétrique.

Réciproquement supposons que ω est antisymétrique, alors pour tout x ∈ V on a
ω(x, x) = −ω(x, x) (par antisymétrie), donc

2ω(x, x) = ω(x, x) + ω(x, x) = 0,

ce qui implique que ω(x, x) = 0 pour tout x ∈ V . Une forme bilinéaire est donc alternée
si et seulement si elle est antisymétrique.

(b) Le raisonnement en (a) est valable sur un corps quelconque, à condition que 2 ̸= 0.
L’équivalence entre forme bilinéaire alternée et antisymétrique est donc vraie pour toute
forme bilinéaire sur un corps K quelconque de caractéristique différente de 2.

Remarquons que si K est de caractéristique 2, alors 2 = 0 dans K et donc 1 = −1
et ω(x, y) = −ω(x, y) pour tous x, y ∈ V . Sur un tel corps une forme bilinéaire est
symétrique si et seulement si elle est antisymétrique (i.e. les deux notions coïncident).
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Exercice 3. Montrons la première formule. Soient u, v ∈ V . Alors
∥u+ v∥2 = ⟨u+ v, u+ v⟩ = ⟨u, u⟩ + ⟨u, v⟩ + ⟨v, u⟩ + ⟨v, v⟩ = ⟨u, u⟩ + 2⟨u, v⟩ + ⟨v, v⟩,

où on a utilisé la bilinéarité dans la deuxième égalité et la symétrie dans la troisième
égalité. Donc

1
2
(
∥u+ v∥2 − ∥u∥2 − ∥v∥2) = 1

2 (⟨u, u⟩ + 2⟨u, v⟩ + ⟨v, v⟩ − ⟨u, u⟩ − ⟨v, v⟩)

= ⟨u, v⟩.
La deuxième formule se prouve de la même façon et la troisième formule est une consé-
quence des deux premières.

Exercice 4. (a) On peut procéder par calcul direct ou par récurrence.

Par calcul direct :∥∥∥∥∥
n∑

i=1

vi

∥∥∥∥∥
2

=
〈

r∑
i=1

nvi,
n∑

j=1

vj

〉
=

n∑
i=1

n∑
j=1

⟨vi, vj⟩ =
n∑

i=1

∥vi∥2,

car

⟨vi, vj⟩ =
{

∥vi∥2 si i = j

0 si i ̸= j
.

Par récurrence sur n. Si n = 1, il n’y a rien à montrer. Supposons maintenant n ≥ 2.
Comme vn est orthogonal à chacun des vi pour 1 ≤ i ≤ n − 1, il est aussi orthogonal à
leur somme u = v1 + . . .+ vn−1 par linéarité du produit scalaire :

⟨u, vn⟩ = ⟨v1 + . . .+ vn−1, vn⟩ = ⟨v1, vn⟩ + . . .+ ⟨vn−1, vn⟩ = 0 ,
et de même ⟨vn, u⟩ = 0 par symétrie. Alors
∥u+vn∥2 = ⟨u+vn, u+vn⟩ = ⟨u, u⟩+⟨u, vn⟩+⟨vn, u⟩+⟨vn, vn⟩ = ⟨u, u⟩+⟨vn, vn⟩ = ∥u∥2+∥vn∥2 .

Mais, par hypothèse de récurrence, ∥u∥2 = ∥v1 + . . .+ vn−1∥2 = ∥v1∥2 + . . .+ ∥vn−1∥2. On
en déduit donc

∥v1 + . . .+ vn∥2 = ∥u+ vn∥2 = ∥u∥2 + ∥vn∥2 = ∥v1∥2 + . . .+ ∥vn−1∥2 + ∥vn∥2 ,

ce qu’il fallait démontrer.

(b) Supposons que
n∑

i=1

λivi = 0, où λ1, . . . , λn ∈ R. Par le théorème de Pythagore

généralisé on a
n∑

i=1

λ2
i ∥vi∥2 =

r∑
i=1

∥λivi∥2 =

∥∥∥∥∥
n∑

i=1

λivi

∥∥∥∥∥
2

= 0.

Donc λi = 0 pour tout i car chaque ∥vi∥2 > 0.
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Exercice 5. (a) Un quadrilatère de sommet ABCD dans le plan euclidien R2 est un
parallélogramme si et seulement si on a les égalités vectorielles :

−→
AB = −−→

DC et −−→
AD = −−→

BC,

où −→
AB = (B−A) etc. Notons x = −→

AB et y = −−→
AD, les diagonales du parallélogramme sont

alors −→
AC = x+ y et −−→

BD = y − x et le parallélogramme est un losange si et seulement si

∥x∥ = d(A,B) = d(A,D) = ∥y∥.

En appliquant la formule de polarisation aux vecteurs x+ y et x− y, on voit que

⟨x+ y, x− y⟩ = 1
4
(
∥(x+ y) + (x− y)∥2 − ∥(x+ y) − (x− y)∥2) = ∥x∥2 − ∥y∥2,

c’est-à-dire 〈−→
AC,

−−→
BD

〉
=

∥∥∥−→
AB

∥∥∥2
−

∥∥∥−−→
AD

∥∥∥2
.

L’affirmation (a) découle immédiatement de cette propriété.

(b) On a

∥x+y∥2+∥x−y∥2 =
(
∥x∥2 + 2⟨x, y⟩ + ∥y∥2)+(

∥x∥2 − 2⟨x, y⟩ + ∥y∥2) = 2
(
∥x∥2 + ∥y∥2) .

C’est-à-dire ∥∥∥−→
AC

∥∥∥2
+
∥∥∥−−→
BD

∥∥∥2
= 2

(∥∥∥−→
AB

∥∥∥2
+
∥∥∥−−→
AD

∥∥∥2
)
.

(c) Si ABCD est un rectangle, alors ⟨x, y⟩ = 0 et ∥x+ y∥ = ∥x− y∥ (les diagonales d’un
rectangle ont même longueur). La relation précédente devient

∥x+ y∥2 = ∥x∥2 + ∥y∥2.

Exercice 6. Sur L2([0, π/2]), on introduit le produit scalaire

⟨f, g⟩ =
∫ π/2

0
f(x)g(x)dx.

On applique l’inégalité de Cauchy-Schwartz

⟨f1, f2⟩ ≤ ||f1||||f2||

aux fonctions f1(x) =
√
x et f2(x) =

√
sin(x). On a dans ce cas

||f1||2 = ⟨f1, f1⟩ =
∫ π/2

0
x dx = π2

8 ,
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et
||f2||2 = ⟨f2, f2⟩ =

∫ π/2

0
sin(x)dx = 1.

Donc ∫ π/2

0

√
x sin(x)dx = ⟨f1, f2⟩ ≤ ∥f1∥∥f2∥ =

√
π2

8 · 1 = π√
8
.

Exercice 7. (a) La condition A · At = In entraîne que toute matrice orthogonale est
inversible. Par conséquent O(n) ⊂ GLn(R) et on vérifie facilement qu’il s’agit d’un sous-
groupe.

(b) On admet que si A ∈ Mn(R) est une matrice antisymétrique, alors la matrice
(I − A) est inversible (on le montrera dans une prochaine série d’exercices).
On observe d’une part que (I + A)t = (I − A) et d’autre part que (I + A) et (I − A)
commutent (car (I + A)(I − A) = (I − A)(I + A) = I − A2), d’où on déduit facilement
que (I + A) et (I − A)−1 commutent aussi. Donc

Bt =
(
(I + A)(I − A)−1)t =

(
(I − A)−1(I + A)

)t = (I + A)t
(
(I − A)−1)t

.

On rappelle aussi que pour toute matrice inversible X on a (X−1)t = (X t)−1, ainsi

Bt = (I + A)t
(
(I − A)t

)−1 = (I − A)(I + A)−1.

Et finalement
B ·Bt = (I + A)(I − A)−1 · (I − A)(I + A)−1 = I.

(c) Pour A =
(

0 −s
s 0

)
on trouve

B = (I + A)(I − A)−1 = 1
1 + s2

(
1 − s2 −2s

2s 1 − s2

)

Exercice 8. Le polynôme caractéristique de B est χB = X4 −8X3 +6X2 +40X+25 =
(X + 1)2(X − 5)2. Le spectre est donc σ(B) = {−1, 5} et les multiplicités géométrique
de ces deux valeurs propres sont égales 1, donc la forme canonique de Jordan de B est la
matrice

J [B] = J2(5) ⊕ J2(−1) =


5 1 0 0
0 5 0 0
0 0 −1 1
0 0 0 −1

 .
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Pour trouver une base de Jordan, on cherche alors deux vecteurs cycliques d’ordre 2,
l’un pour la matrice (B+ I4) et l’un pour la matrice (B− 5I4). Concrètement cela signifie
qu’on cherche Y2, Z2 ∈ K4 tels que

Z1 = (B + I4)Z2 ̸= 0, (B + I4)2Z2 = (B + I4)Z1 = 0
Y1 = (B − 5I4)Y2 ̸= 0, (B − 5I4)2Y2 = (B − 5I4)Y1 = 0.

On peut prendre pour Z2 le quatrième vecteur de base et pour Y2 le deuxième vecteurs
de bases, on a donc

Z2 =


0
0
0
1

 , Z1 = (B + I4)Z2 =


0
0
1
1

 , Y2 =


0
1
0
0

 , Y1 = (B − 5I4)Y2 =


1
0
1
0

 .

La matrice de changement de base cherchée est donc

P =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 1 1

 , et on vérifie que PJ [B] = AP.

Exercice 9. (a) On note Pn ⊂ R[X] le sous-espace vectoriel des polynômes à coefficients
réels de degré au plus n, et P ′

n l’espace vectoriel dual. On sait que les masses de Diracs
(covecteurs d’évaluation) δx0 , δx1 , . . . δxn ∈ P∗

n sont linéairement indépendantes et forment
donc une base de l’espace dual puisque dim(P ′

n) = n+ 1. Le covecteur d’intégration

I[a,b] : P 7→
∫ b

a

P (x)dx

est donc combinaison linéaire des δxj
, ce qui signifie qu’il existe m0,m1, . . .mn ∈ R tels

que

I[a,b] =
n∑

k=0

mkδxk
∈ P ′

n.

Cette égalité signifie que pour tout polynôme P ∈ Pn on a

I[a,b](P ) =
n∑

k=0

mkδxk
(P ), c’est-à-dire

∫ b

a

P (x)dx =
n∑

k=0

mkP (xk).

(b) Non, il n’y a pas de contradiction entre les exercice 9.9(a) et 8.8(d), car un poly-
nôme de degré au plus n est complètement déterminé par n+ 1 valeurs distinctes.

5



EPFL - Printemps 2025
Algèbre linéaire avancée II Section de Physique
Solution 9

Alexis Michelat
Exercices

17 avril 2025

Dans les deux cas on discute de la possibilité de représenter (ou non) le covecteur
d’intégration comme combinaison linéaire de covecteurs d’évaluation. Mais dans le cas
de l’exercice 9.9(d) on considère seulement l’espace vectoriel des polynômes de degré au
plus n, qui est un espace vectoriel de dimension finie alors que dans l’exercice 9.9(a) on
considère l’espace vectoriel de toutes les fonctions continues, qui est de dimension infinie.

(c) En posant que ∫ 2

0
P (x)dx = m0 P (0) +m1 P (1) +m2 P (2),

pour les polynômes p0(x) = 1, p1(x) = x, p2(x) = x2, on trouve le système d’équations
linéaires suivant pour m0, m1 et m2 :

m0 +m1 +m2 = 2,
0 ·m0 +m1 + 2 ·m2 = 2,

0 ·m0 +m1 + 4 ·m2 = 8
3 .

La solution est m0 = 1
3, m1 = 4

3 et m2 = 1
3.

Remarque 1. On peut aussi utiliser les formules d’interpolation de Lagrange pour dé-
terminer les poids mk.
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